This is an outdated version published on 2023-05-13. Read the most recent version.

Non-probabilistic hazard evaluation

Authors

  • István Bukovics John Wesley Theological College
  • István Kun John Wesley Theological College

DOI:

https://doi.org/10.59531/ots.2023.1.1.131-142

Keywords:

logic-based risk assessment, logic-based indicators, fault tree analysis, soil contamination, environmental pollution

Abstract

Quantitative analysis of complex risk systems often faces three major problems. The first problem is the size of the system to be examined, since the number of possible system states increases exponentially with system size. The second problem is the topology of the system which may not be tree-like. The third problem is the consideration of randomness, since risk events are in many cases single, non-repetitive, therefore probability theory is inadequate. In order to handle this deficiency we suggest to apply logical risk analysis which traces back the main risk event to elementary, controllable risk events by means of the logical structure describing the operation of the risk system. For illustrations we give some very simple structures and a soil contamination problem as a real-size example.

References

Birkhoff, G., Bartee, T.C.(1970): Modern Applied Algebra. – McGraw-Hill, New York.

Bukovics I., Fáy Gy. Kun I. (2015): A jó állam és a védelmi szféra (The good state and the defence sphere). Hadmérnök, 10(2): 208-222.

http://hadmernok.hu/152_19_bukovicsi_fgy_ki.pdf

Demetrovics J., Denev, J., Pavlov, R. (1985): A számítástudomány matematikai alapjai (Mathematical foundations of computer science). Tankönyvkiadó, Budapest.

(FAO, 1999) Pressure-State-Response Framework and Environmental Indicators, in: Livestock, Environment and Development Initiative (LEAD), Food and Agriculture Organisation of the UN (FAO), Indicators, 1999., http://www.fao.org/ag/againfo/programmes/en/lead/toolbox/Refer/EnvIndi.htm

Jaglom, I. M. (1983): Boole struktúrák és modelljeik (Boole structures and their models). – Műszaki Könyvkiadó, Budapest.

Nagy R. (2011): A kritikus infrastruktúra védelme elméleti és gyakorlati kérdéseinek kutatása (Research in theoritcal and practical problems of the defence of critical infrastructure). Doctoral dissertation. - National University of Public Service, Budapest.

Olsson, J. A., Hilding-Rydevik, T., Aalbu, H., Bradley, K. (2004): Indicators for Sustainable Development. Paper for discussion, European Regional Network on Sustainable Development, Nordregio, Nordic Centre for Spatial Development, Cardiff, 23-24.

Pokorádi L. (2011): Sensitivity Investigation of Fault Tree Analysis with Matrix-Algebraic Method. Theory and Applications of Mathematics & Computer Science, 1(1): 34-44.

Pokorádi L. (2015): Failure Probability Analysis of Bridge Structure Systems. In: Proc. 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics, (May 21-23. Timişoara, Romania, 319-322.

Szili T., Pokorádi L. (2014): Igazságtábla alkalmazása rendszer megbízhatóság elemzésére (Application of the truth table method for the analysis of system reliability). In: Fiatal műszakiak tudományos ülésszaka XIX (Scientific session of young engineers XIX). Kolozsvár, 2014. március 20–21. 377-380.

Teljesítménymenedzsment 1. Fejlesztési módszertan a szervezeti célok meghatározására, valamint a szervezeti teljesítmény indikátorok kidolgozásának támogatására. (Efficiency management 1. Development methodology for for the designation of organizational objectives and for the support of the elaboration of organizational efficiency indicators) – Közigazgatási és Igazságügyi Minisztérium, Budapest.

Downloads

Published

2023-05-08 — Updated on 2023-05-13

Versions

How to Cite

Bukovics, I., & Kun, I. (2023). Non-probabilistic hazard evaluation . Opuscula Theologica Et Scientifica, 1(1), 131–142. https://doi.org/10.59531/ots.2023.1.1.131-142 (Original work published May 8, 2023)

Issue

Section

Multidisciplinary and Methodological Approaches

Most read articles by the same author(s)