Possibilities of agroforestry systems in organic farming

Authors

  • Sára Körmöczi John Wesley Theological College, Budapest

DOI:

https://doi.org/10.59531/ots.2024.2.2.75-97

Keywords:

agroecology, biodiversity, ecosystem services, intercropping, sustainability

Abstract

Agriculture is the only provider of human food. However, currently demand seems to exceed the limitations of conventional farming practices, as the latter often rely on scarce resources. The focus of agricultural research appears to be shifting towards another approach, namely sustainable farming, which is hoped to pose a solution for the aforementioned issue. Considerable yield and farm resilience are expected from such a practice to withstand and mitigate negative effects of climate change and provide for human well-being. This paper aims to investigate such possibilities focusing on the Carpathian basin’s climate. First, current trends are analyzed, then ecological farming and its challenges are explained in further detail. Finally, agroforestry is introduced as an approach and framework to react to these challenges. As a result, connection points are highlighted which indicate that combining ecological farming with agroforestry could indeed be the basis of a safe and sustainable agriculture.

References

Altieri M.A., Nicholls C.I. (2008): Ecologically Based Pest Management in Agroforestry Systems. – In: D. R. Batish eds. et al. Ecological basis of agroforestry, CRC Press, Boca Raton.

Barry P. and Menfield M. (2008): Nutrient management on organic farms. – Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford.

Bartha D. (2003): Történeti erdőhasználatok Magyarországon. – Magyar Tudomány 48(12): 1566-1577.

Boinot S., Poulmarc'h J., Mézière D., Lauri P., Sarthou J. (2019): Distribution of overwintering invertebrates in temperate agroforestry systems: Implications for biodiversity conservation and biological control of crop pests. – Agriculture, Ecosystems and Environment. 285: 106630.

https://doi.org/10.1016/j.agee.2019.106630

Cardinael R. [et al.] (2015): Competition with winter crops induces deeper rooting of walnut trees in a Mediterranean alley cropping agroforestry system. – Plant and Soil. 391:219-235

https://doi.org/10.1007/s11104-015-2422-8

den Herder M, [et al.] (2016): Current extent and trends of agroforestry in the EU27. Deliverable Report 1.2 for EU FP7. Research Project AGFORWARD 613520, August 2016, 2nd Edition.

https://livingagrolab.eu/wp-content/uploads/2023/02/D1_2_Extent_of_Agroforestry.pdf

Dix M, [et al.] (1995): Sustainable pest management in agroforestry ecosystems. – In: Society of American Foresters. Convention (USA).

FAO (1985): Guidelines: Land Evaluation for Irrigated Agriculture. FAO Soils Bulletin 55;

FAO (2015): Agroforestry systems.

http://www.fao.org/forestry/agroforestry/89998/en/

Frison E. A, Cherfas J, Hodgkin T. (2011): Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. – Sustainability 3(1): 238-253. https://doi.org/10.3390/su3010238

Goulding K, Stockdale E, Watson C. (2009): Plant Nutrients in Organic Farming. – In: Kirchmann H, Bergström L. (eds.) Organic Crop Production - Ambitions and Limitations. Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-9316-6_4

Allsopp, M. [et al.] (2014): Mérgek vagy méhek? Úton a fenntartható mezőgazdaság felé. – Greenpeace Magyarország Egyesület, Budapest. Mergek_vagy_mehek.pdf (archive-it.org)

Hamidian A., Zehtabyan G., Khosravi H. (2011): Socio-Economic Benefits of Agroforestry for 1st National Conference of New Approaches in Natural Resources Sustainable Management.

IFOAM (2008): Definition of organic agriculture. https://www.ifoam.bio/why-organic/organic-landmarks/definition-organic

Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.) (2014): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 p.

ITM (2018): NÉS (Melléklet a 23/2018. (X. 31.) OGY határozathoz),

Jacobi J, Schneider M, Rist S. (2014): Agroforstwirtschaft als ökologisch, ökonomisch und sozial nachhaltige Landnutzungsform: Fallbeispiel Kakaoanbau in Bolivien. – Elemente Der Naturwissenschaft (100):4-25. 10.18756/edn.100.4

Jouzi Z, [et al.]: Organic Farming and Small-Scale Farmers: Main Opportunities and Challenges. – In: Ecological Economics 132, 144-154.

https://doi.org/10.1016/j.ecolecon.2016.10.016

Kemény G., Molnár A., Fogarasi J. (szerk.). (2019): A klímaváltozás hatásának modellezése a főbb hazai gabonafélék esetében [Modelling the impact of climate change for the key cereal crops in Hungary]. – NAIK Agrárgazdasági Kutatóintézet, Budapest.

Kohli R. K, Singh H P, Batish D. R, Jose S. (2008): Ecological Interactions in Agroforestry: An Overview. – In: Batish, D. [et al.], (eds): Ecological basis of agroforestry. CRC Press, Boka Raton.

https://doi.org/10.1201/9781420043365.pt1

Krummenacher. J. [et al.] (2008): Ökonomisches und ökologisches Potenzial der Agroforstwirtschaft. – Agraforschung 15(3):132-137.

KSH (2017): A nemzetgazdasági ágak üvegházhatású gáz- és légszennyezőanyag-kibocsátása.

http://www.ksh.hu/docs/hun/xftp/idoszaki/pdf/uveghazhatas15.pdf

KSH (n.d.): Az ökológiai gazdálkodás szerepe egyre nagyobb az agráriumban. http://www.ksh.hu/docs/hun/xftp/stattukor/okogazd/index.html#abiogazdlkodshelyzetemagyarorszgon

Leakey Roger R. B.(1998): Agroforestry for Biodiversity in Farming Systems. – In: Collins, W.W. and Qualset, C.O. (Eds.). Biodiversity in Agroecosystems. CRC Press, Boca Raton, USA.

Li S., [et al.] (2017): Relating farmer's perceptions of climate change risk to adaptation behaviour in Hungary. – Journal of Environmental Management 185, 21-30.

https://doi.org/10.1016/j.jenvman.2016.10.051

Lorenz K., Lal R. (2014): Soil organic carbon sequestration in agroforestry systems. A review. – Agronomy for Sustainable Development 34, 443-454.

https://doi.org/10.1007/s13593-014-0212-y

Mezősi G, Bata T, Meyer B. C, Blanka V, Ladányi Zs. (2014): Climate Change Impacts on Environmental Hazards on the Great Hungarian Plain, Carpathian Basin. – Int. J. Disaster Risk Sci. 5, 136-146. https://doi.org/10.1007/s13753-014-0016-3

Moudry J, Hartl W, Cudlínová E, Moudry J, Konvalina P, Smárek J. (2009): Major problems of organic farming - experience transmission. – Lucrări Ştiinţifice, Seria Agronomie 52(1):327-333.

Nair, P.K.R. (2012): Climate Change Mitigation: A Low-Hanging Fruit of Agroforestry. – In. Nair, P.K., Garrity, D. (eds.): Agroforestry The Future of Global Land Use. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4676-3_7

NAK (2021): Ökológiai gazdálkodás. Kézikönyv a támogatási kérelem benyújtásához. – Nemzeti Agrárgazdasági Kamara, Budapest.

Nicodemo M. L. F. [et al.] (2016): Reducing competition in agroforestry by pruning native trees. – Revista Árvore 40(3): 509-518.

https://doi.org/10.1590/0100-67622016000300014

ÖMKI (2012?): 50 érv a biogazdálkodás mellett. – Ökológiai Kutatóintézet Nonprofit Kft., Gödöllő. 50 érv a biogazdálkodás mellett (oszk.hu)

Padányi J., Halász L.: A klímaváltozás hatásai. – Nemzeti Közszolgálati Egyetem, 2012.

Paldy A, Bobvos J. (2010): Climate change and health-challenges for Hungary. – Med Srod. 13(1):19-29.

Pardon, P.: Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems; in Agriculture, Ecosystems & Environment, Volume 247, 1 September 2017, 98-111. https://doi.org/10.1016/j.agee.2017.06.018

Parlament (2018): A biogazdálkodás története és tendenciái: elemzés az országgyűlési képviselők részére. – Országgyűlés Hivatala, Budapest.

https://www.parlament.hu/documents/10181/1763272/Elemz%C3%A9s_2018_Biogazdalkod%C3%A1s.pdf/efbe988d-5f9f-af3b-1654-ec4e1f90531d

Parlament (2019): Klímaváltozás és mezőgazdaság. – Infojegyzet 53: december 9. https://www.parlament.hu/documents/10181/1789217/Infojegyzet_2019_53_klimavaltozas_es_mezogazdasag.pdf/266bafc1-246b-b450-e4dc-db850c894170?t=1575887136013

Pimentel, D. [et al.] (2005): Environmental, energetic, and economic comparisons of organic and conventional farming systems. – Bioscience 55(7): 573-582.

https://doi.org/10.1641/0006-3568(2005)055[0573:EEAECO] 2.0.CO;2

Rahaman A. [et al.] (2018): Productivity and Profitability of Jackfruit-Eggplant Agroforestry System in the Terrace Ecosystem of Bangladesh. – Turkish Journal of Agriculture-Food Science and Technology 6(2): 124.

https://doi.org/10.24925/turjaf.v6i2.124-129.1330

Shibu J. (2009): Agroforestry for ecosystem services and environmental benefits: An overview. – Agroforestry Systems 76: 1-10. https://doi.org/10.1007/s10457-009-9229-7

Sileshi G., [et al.] (2008): Diseases, Insect Pests, and Tri-Trophic Interactions in Tropical Agroforestry. – In: Batish, D. R. et al. (eds.) Ecological basis of agroforestry. CRC Press, Boca Raton.

Somogyi Z. (2016): Fűben-fában karbon.

http://www.scientia.hu/fubenfabankarbon/Fuben-faban_karbon.pdf

Szabó P. (2006): Erdőgazdálkodás a középkorban. – In: Laszlovszky J, Ferenczi L and Szabó P (ed.). Magyar középkori gazdaság- és pénztörténet. 81-103. Bölcsész Konzorcium, Budapest.

Udawatta P. R, Rankoth L, Jose S. (2019): Agroforestry and Biodiversity. – Sustainability 11(10): 2879. https://doi.org/10.3390/su11102879

Umrani R. and Jain C. K. (2010): Agroforestry systems and practices. – Oxford Book Company, Delhi.

Valkó G. (2017): A fenntartható mezőgazdaság indikátorrendszerének kialakítása az Európai Unió tagországaira vonatkozóan; Központi Statisztikai Hivatal, Budapest.

Zamozny G. (2018): Agrárerdészeti ismeretek. Útmutató Környezetbarát és Jövedelmező Gazdálkodási Módszerekhez. – Német Szövetségi Környezetvédelmi Alapítvány (DBU); BTU, Cottbus.

https://mek.oszk.hu/18900/18937/18937.pdf

Zinati G. M. (2002): Transition from conventional to organic farming systems: I. challenges, recommendations and guidelines for pest management. – Hort. Technology 12(4): 606-610. https://doi.org/10.21273/HORTTECH.12.4.606

Downloads

Published

2024-09-11

How to Cite

Körmöczi, S. (2024). Possibilities of agroforestry systems in organic farming. Opuscula Theologica Et Scientifica, 2(2), 75–97. https://doi.org/10.59531/ots.2024.2.2.75-97