Ökológiai indikáció lehetőségei páncélosatkák alapján

Szerzők

  • Ferenc Mics Wesley János Lelkészképző Főiskola

DOI:

https://doi.org/10.59531/ots.2024.2.1.59-95

Kulcsszavak:

biodiverzitás, talajzoológia, fauna, ökológiai szerepkör, közösségszerkezet

Absztrakt

A talajlakó páncélosatkák alkalmazásában rejlő ökológiai indikációs lehetőségeket évtizedek óta hangsúlyozzák a terület kutatói. Ezek az apró élőlények olyan sajátosságokkal rendelkeznek, melyek alkalmassá teszik őket arra, hogy környezetük változásaira érzékenyen reagáljanak, így a bioindikáció révén információt hordoznak számunkra. Páncélosakták majdnem minden élőhelytípusban előfordulnak, szárazföldön és vizekben egyaránt, sokféle mikrohabitatban (talaj, zúzmó, moha, fakéreg, epifitonok, lombozat). A széleskörű és változatos habitatokban való elterjedségen kívül alkalmazkodóképességük nagy észlelhető egyedsűrűségükben és fajdiverzitásukban is megmutatkozik. Korábban számos publikáció jelent már meg különböző szituációkban és módokon történő bioindikációjukkal kapcsolatban. A jelen dolgozat célkitűzése, hogy azokat az általános tulajdonságaikat gyűjtse össze, amelyek arra mutatnak, hogy a bennük rejlő bioindikációs potenciál lényegesen nagyobb és széleskörűbb, mint amit az eddig megjelent publikációk tükröznek.

Hivatkozások

Alberti, G. (1998): Fine structure of receptor organs in oribatid mites (Acari). – In: Ebermann, E. Arthro-pod Biology: Contributions to Morphology, Ecology and Systematics. Biosystematics and Ecology Series 14: 27-77.

Alberti, G., Storch, V. (1977): Zur Ultrastruktur der Coxaldrüsen actinotricher Milben. – Zoologische Jahrbücher 109: 394-425.

Anderson, J. M., Swift, M. J. (1983): Decomposition in tropical forests. – In: Sutton, S. L., Whitmore, T. C., Chadwick, A. C. Tropical rain forest: ecology and management. Special Publication Series of the British Ecological Society, n. 2. Blackwell, Oxford.

Andrievskii, V. S., Barsukov, P. A., Bashkin, V. N. (2015): Application of Soil Oribatid Mites as Bioindicators in Impact Areas of the Gas Industry in the West Siberian Tundra. – The Open Ecology Journal 8(Suppl 1-M4): 32-39. https://doi.org/10.2174/1874213001508010032

Ashman, M., Puri, G. (2002): Essential Soil Science: A Clear and Concise Introduction to Soil Science. – Blackwell Science, Oxford.

Badejo, M. A., Akinwole, P. (2007): Preliminary study of the feeding habits of seven species of oribatid mites from Nigeria. – Systematic and Applied Acarology 12(2): 121. https://doi.org/10.11158/saa.12.2.5

Badejo, M. A., Akinwole, P. O. (2006): Microenvironmental preferences of oribatid mite species on the floor of a tropical rainforest. – Experimental and Applied Acarology 40: 145-156. https://doi.org/10.1007/s10493-006-9029-y

Bartsch, I. (2004): Geographical and ecological distribution of marine halacarid genera and species (Acari: Halacaridae). – Experimental and Applied Acarology 34(1-2): 37-58. https://doi.org/10.1023/B:APPA.0000044438.32992.35

Bayartogtokh, B. (2005): Biodiversity and Ecology of Soil Oribatid Mites (Acari: Oribatida) in the Grass-land Habitats of Eastern Mongolia. – Erforschung biologischer Ressourcen der Mongolei 9: 59-70.

Behan‐Pelletier, V. M. (1999): Oribatid mite biodiversity in agroecosystems: Role for bioindication. – Agriculture, Ecosystems & Environment 74(1-3): 411-423. https://doi.org/10.1016/S0167-8809(99)00046-8

Behan‐Pelletier, V. M. (2003): Acari and Collembola biodiversity in Canadian agricultural soils. – Canadian Journal of Soil Science 83: 279-288. https://doi.org/10.4141/S01-063

Behan-Pelletier, V. M., Bissett, B. (1994): Oribatida of Canadian Peatlands. – The Memoirs of the Entomological Society of Canada 126(S169): 73-88. https://doi.org/10.4039/entm126169073-1

Behan-Pelletier, V., Walter, D. E. (2000): Biodiversity of Oribatid Mites (Acari: Oribatida) in Tree Canopies and Litter. – In: Coleman, D. C, Hendrix, P. F. Invertebrates as Webmasters in Ecosystems. CABI Publishing, New York. https://doi.org/10.1079/9780851993942.0187

Belanger, S. D. (1976): The Microarthropod Community of Sphagnum Moss with Emphasis on the Oribatei. – M.Sc. thesis, State University of New York, Syracuse.

Błoszyk, J., Adamski, Z., Napierała, A., Dylewska, M. (2004): Parthenogenesis as a life strategy among mites of the suborder Uropodina (Acari: Mesostigmata). – Canadian Journal of Zoology 82: 1503-1511. https://doi.org/10.1139/z04-133

Bluhm, C., Butenschoen, O., Maraun, M., Scheu, S. (2019): Effects of root and leaf litter identity and diver-sity on oribatid mite abundance, species richness and community composition. – PLoS ONE 14(7): e0219166. https://doi.org/10.1371/journal.pone.0219166

Bobbink, R., Hettelingh, J.-P., Braun, S, Nordin, A., Power, S., Schütz, K., Strengbom, J., Weijters, M., Tomassen, H. (2010): Review and revision of empirical critical loads and dose-response relationships. – Proceedings of the An Expert Workshop, Noordwijkerhout, The Netherlands.

Brückner, A., Hilpert, A., Heethoff, M. (2017): Biomarker function and nutritional stoichiometry of neu-tral lipid fatty acids and amino acids in oribatid mites. – Soil Biology & Biochemistry 115: 35-43. https://doi.org/10.1016/j.soilbio.2017.07.020

Brückner, A., Schuster, R., Smit, T., Heethhoff, M. (2018): Imprinted or innate food preferences in the model mite Archegozetes longisetosus (Actinotrichida, Oribatida, Trhypochthoniidae). – Soil Organisms 90(1): 23-26.

Brümmer, G. W. (1986): Heavy Metal Species, Mobility and Availability in Soils. – In: Bernhard, M, Brinckman, F. E, Sadler, P. J. The Importance of Chemical "Speciation" in Environmental Processes. Dahlem Workshop Reports (Life Sciences Research Report), vol 33. Springer, Berlin, Heidelberg.

Bücking, J. (1998): Investigations on the feeding habits of the rocky-shore mite Hyadesia fusca (Acari: Astigmata: Hyadesiidae): diet range, food preference, food quality, and the implications for distribution patterns. – Helgoländer Meeresuntersuchungen 52: 159-177. https://doi.org/10.1007/BF02908745

Bücking, J., Ernst, H., Siemer, F. (1998): Population dynamics of phytophagous mites inhabiting rocky shores - K-strategists in an extreme environment? - In: Ebermann, E. Arthropod Biology: Contributions to Morphology, Ecology and Systematics. Biosystematics and Ecology Series 14. Österreichische Akade-mie der Wissenschaften, Vienna.

Caruso, T., Taormina, M., Migliorini, M. (2012): Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites. – Journal of Animal Ecology 81: 2014-221. https://doi.org/10.1111/j.1365-2656.2011.01886.x

Cassagne, N, Spiegelberger, T, Cécillon, L, Juvy, B, Brun, J.-J. (2008): The impact of soil temperature in-crease on organic matter and faunal properties in a frozen calcareous scree in the French Alps. – Ge-oderma 146: 239-247. https://doi.org/10.1016/j.geoderma.2008.05.028

[Clinton, B. D., Vose, J. M., Knoepp, J. D., Elliott, K. J., Reynolds, B. C, Zarnoch, S. J. (2010): Can structural and functional characteristics be used to identify riparian zone width in southern Appalachian headwater catchments? - Canadian Journal of Forest Research 40(2): 235-253. https://doi.org/10.1139/X09-182

Coulson, S. J., Hodkinson, I. D., Webb, N. R., Block, W., Bale, J. S, Strathdee, A. T, Worland, M. R, Wooley, C. (1996): Effects of experimental temperature elevation on high-arctic soil microarthropod populations. – Polar Biology 16: 147-153. https://doi.org/10.1007/BF02390435

Crotty, F. V., Adl, S. M. (2019): Competition and Predation in Soil Fungivorous Microarthropods Using Stable Isotope Ratio Mass Spectrometry. – Frontiers in Microbiology 10: 1274. https://doi.org/10.3389/fmicb.2019.01274

de Moraes, J., Franklin, E., de Morais, J. W., de Souza, J. L. P. (2011): Species diversity of edaphic mites (Acari: Oribatida) and effects of topography, soil properties and litter gradients on their qualitative and quantitative composition in 64 km2 of forest in Amazonia. – Experimental and Applied Acarology 55: 39-63. https://doi.org/10.1007/s10493-011-9451-7

DeNiro, M. J., Epstein, S. (1981): Influence of diet on the distribution of nitrogen isotopes in animals. – Geochimica et Cosmochimica Acta 45: 341-351. https://doi.org/10.1016/0016-7037(81)90244-1

Eitminavičiūtė, I. S. (1966): Oribatidy beregov zaboločennych ozer (1. Nizinnoe boloto). – Liet TSR Moksl Akad Darb S, Vilnius, Serija C 1(39): 53-62.

Eitminavičiūtė, I, Matusevičiūtė, A, Augustaitis, A. (2008): Dynamic and seasonal fluctuations of microarthropod complex in coniferous forest soil. – Ekologija 54(4): 201-215. https://doi.org/10.2478/v10055-008-0031-z

El-Sharabasy, H. M. (2013): Factors Affecting the Vertical Distribution of Oribatid Mites (Acari: Oribatida) in Ismailia Governorate, Egypt. – Acarines 7(2): 37-43. https://doi.org/10.21608/ajesa.2013.163704

Erdmann, G., Otte, V., Langel, R., Scheu, S., Maraun, M. (2007): The trophic structure of bark-living oriba-tid mite communities analysed with stable isotopes (15N, 13C) indicates strong niche differentiation. – Experimental and Applied Acarology 41: 1-10. https://doi.org/10.1007/s10493-007-9060-7

Erdmann, G., Scheu, S., Maraun, M. (2012): Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida). – Experimental and Applied Acarology 57: 157-169. https://doi.org/10.1007/s10493-012-9546-9

Fajana, H. O., Gainer, A., Jegede, O. O., Awuah, K. F., Princz, J. I., Owojori, O. J., Siciliano, S. D. (2019): Oppia nitens C.L. Koch, 1836 (Acari: Oribatida): Current Status of Its Bionomics and Relevance as a Model Invertebrate in Soil Ecotoxicology. – Environmental Toxicology and Chemistry 38(12): 2593-2613. https://doi.org/10.1002/etc.4574

Farid, H. M. (2019): Effect of different soil fungi on biological aspects of the oribatid mite Nothrus sil-vestris (Acari: Oribatida) in the laboratory. – Egyptian Journal of Plant Protection Research Institute 2(1): 81-87.

Feketeová, Z., Mangová, B., Čierniková, M. (2021): The Soil Chemical Properties Influencing the Oribatid Mite (Acari; Oribatida) Abundance and Diversity in Coal Ash Basin Vicinage). – Applied Sciences 11:3537. https://doi.org/10.3390/app11083537

Feketeová, Z., Sládkovičova, V. H., Mangová, B., Pogányová, A., Šimkovič, I., Krumpál, M. (2016): Bio-logical properties of extremely acidic cyanide-laced mining waste. – Ecotoxicology 25: 202-212. https://doi.org/10.1007/s10646-015-1580-z

Feng, Z., Schneider, J. W., Labandeira, C. C., Kretzschmar, R., Rößler, R. (2015): A specialized feeding habit of Early Permian oribatid mites. – Palaeogeography, Palaeoclimatology, Palaeoecology 417: 121-125. https://doi.org/10.1016/j.palaeo.2014.10.035

Fischer, B. M., Schatz, H. (2013): Biodiversity of oribatid mites (Acari: Oribatida) along an altitudinal gradient in the Central Alps. – Zootaxa 3626(4): 429-454. https://doi.org/10.11646/zootaxa.3626.4.2

Flórián, N., Ladányi, M., Ittzés, A., Kröel-Dulay, Gy., Ónodi, G., Mucsi, M., Szili-Kovács, T., Gergócs, V., Dányi, L., Dombos, M. (2019): Effects of single and repeated drought on soil microarthropods in a semi-arid ecosystem depend more on timing and duration than drought severity. – PLoS ONE 14(7): e0219975. https://doi.org/10.1371/journal.pone.0219975

Francis, A. J. (1982): Effects of acidic precipitation and acidity on soil microbial processes. – Water, Air, & Soil Pollution 18: 375-394. https://doi.org/10.1007/BF02419425

Franklin, E. N., Adis, J., Woas, S. (1997): The Oribatid Mites. – In: Junk, W. J. (ed) Central Amazonian river floodplains: ecology of a pulsing systems. Springer, Berlin. https://doi.org/10.1007/978-3-662-03416-3_16

Franklin, E. S., Albuquerque, M. I. C. (2006): Diversity and distribution of oribatid mites (Acari: Oribatida) in a lowland rain forest in Peru and in several environments of the Brazilians States of Amazonas, Rondônia, Roraima and Pará. – Brazilian Journal of Biology 66(4): 999-1020. https://doi.org/10.1590/S1519-69842006000600007

Gdula, A. K., Skubała, P., Zawieja, B., Gwiazdowicz, D. J. (2021): Mite communities (Acari: Mesostigmata, Oribatida) in the red belt conk, Fomitopsis pinicola (Polyporales), in Polish forests. – Experimental and Applied Acarology 84: 543-564. https://doi.org/10.1007/s10493-021-00635-1

Gergócs, V., Hufnagel, L. (2009): Application of oribatid mites as indicators (review). – Applied Ecology and environmental research 7(1): 79-98. https://doi.org/10.15666/aeer/0701_079098

Gerhardt, A. (2012): Bioindicator species and their use in biomonitoring. – In: Hilary, I. I, John, L. D. Environmental Monitoring, Encyclopaedia of Life Support Systems. United Nations Educational, Scientific and Cultural Organization, Paris.

Gerlach, J., Samways, M., Pryke, J. (2013): Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. – Journal of Insect Conservation 17: 831-850. https://doi.org/10.1007/s10841-013-9565-9

Graczyk, R., Seniczak, S., Graczyk, B. W. (2008): The effect of cattle liquid manure fertilization on the soil mites (Acari) of permanent meadow in Poland. – Journal of Central European Agriculture 9(4): 651-658.

Gulvik, M. E. (2007): Mites [Acari] as indicators of soil biodiversity and land use monitoring: a review. – Polish Journal of Ecology 55(3): 415-440.

Gulvik, M. E., Błoszyk, J., Austad, I., Bajaczyk, R., Piwczyński, D. (2008): Abundance and diversity of soil microarthropod communities related to different land use regime in a traditional farm in Western Norway. – Polish Journal of Ecology 56(2): 273-288.

Guo, Y., Siepel, H. (2020): Monitoring Microarthropods Assemblages along a pH Gradient in a Forest Soil over a 60 Years' Time Period. – Applied Sciences 10: 8202. https://doi.org/10.3390/app10228202

Gutiérrez-López, M., Ranera, E., Novo, M., Fernández, R., Trigo, D. (2014): Does the invasion of the exotic tree Ailanthus altissima affect the soil arthropod community? The case of a riparian forest of the Henares River (Madrid). – European Journal of Soil Biology 62: 39-48. https://doi.org/10.1016/j.ejsobi.2014.02.010

Hågvar, S. (2020): Ecological Spotlights on Mites (Acari) in Norwegian Conifer Forests: A Review. – In: Haouas, D, Hufnagel, L. Pests Control and Acarology. BoD - Books on Demand. https://doi.org/10.5772/intechopen.83478

Hågvar, S., Abrahamsen, G. (1980): Colonisation by Enchytraeidae, Collembola and Acari in Sterile Soil Samples with Adjusted pH Levels. – Oikos 34(3): 245-258. https://doi.org/10.2307/3544284

Hågvar, S., Amundsen, T. (1981): Effects of Liming and Artificial Acid Rain on the Mite (Acari) Fauna in Coniferous Forest. – Oikos 37(1): 7-20. https://doi.org/10.2307/3544068

Haq, M. A. (2016): Oricultural farming practice: a novel approach to agricultural productivity. – Journal of the Acarological Society of Japan 25(S1): 51-75. https://doi.org/10.2300/acari.25.Suppl_51

Haq, M. A. (2019): Potential of oribatid mites in biodegradation and mineralization for enhancing plant productivity. – Acarological Studies 1(2): 101-122.

Hassall, M., Visser, S., Parkinson, D. (1986): Vertical migration of Onychiurus subtenuis (Collembola) in relation to rainfall and microbial activity. – Pedobiologia 29: 175-182.

Hättenschwiler, S., Tiunov, A. V., Scheu, S. (2005): Biodiversity and Litter Decomposition in Terrestrial Ecosystems. – Annual Review of Ecology, Evolution, and Systematics 36: 191-218. https://doi.org/10.1146/annurev.ecolsys.36.112904.151932

Heethoff, M., Bergmann, P., Norton, R. A. (2006): Karyology and sex determination of oribatid mites. – Acarologia 46(1-2): 127-131.

Hickley, M. B. C., Doran, B. (2004): A Review of the Efficiency of Buffer Strips for the Maintenance and Enhancement of Riparian Ecosystems. – Water Quality Research Journal of Canada 39(3): 311-317. https://doi.org/10.2166/wqrj.2004.042

Hodge, A. (2006): Plastic plants and patchy soils. – Journal of Experimental Botany 57: 401-411. https://doi.org/10.1093/jxb/eri280

Hodgkins, S. B., Richardson, C. J., Dommain, R., Wang, H., Glaser, P. H., Verbeke, B., Winkler, B. R., Cobb, A. R., Rich, V. I., Missilmani, M., Flanagan, N, Ho, M, Hoyt, A. M, Harvey, C. F., Vining, S. R., Hough, M. A., Moore, T. R, Richard, P. J. H., De La Cruz, F. B., Toufaily, J., Hamdan, R., Cooper, W. T., Chanton, J. P. (2018): Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. – Nature Communications 9: 3640. https://doi.org/10.1038/s41467-018-06050-2

Howard, D. M., Howard, P. J. A. (1980): Effect of species, source of litter, type of soil, and climate on litter decomposition. Microbial decomposition of tree and shrub leaf litter 3. – Oikos 34: 115-124. https://doi.org/10.2307/3544558

Hoy, M. A. (2008): Soil Mites (Acari: Oribatida and Others). – In: Capinera J. L. Encyclopedia of Entomology. Springer, Dordrecht.

Hubert, J., Jarošík, V., Mourek, J., Kubátová, A., Žárková, E. (2004): Astigmatid mite growth and fungi preference (Acari: Acaridida): Comparisons in laboratory experiments. – Pedobiologia 48: 205-214. https://doi.org/10.1016/j.pedobi.2003.12.005

Huhta, V., Hyvönen, R., Kaasalainen, P., Koskenniemi, A., Muona, J., Mäkelä, I., Sulander, M., Vilkamaa, P. (1986): Soil fauna of Finnish coniferous forests. – Annales Zoologici Fennici 23: 345-360.

Iglesias, R., Palacios-Vargas, J. G, Castaño-Meneses, G. (2019): Comparison of oribatid mites from agricultural soils with contrasting irrigation types in Hidalgo State, Mexico: a case study. – Revista Mexicana de Biodiversidad 90: e902780. https://doi.org/10.22201/ib.20078706e.2019.90.2780

Irmler, U. (2004): Long-term fluctuation of the soil fauna (Collembola and Oribatida) at groundwater-near sites in an alder wood. – Pedobiologia 48: 349-363. https://doi.org/10.1016/j.pedobi.2004.04.001

Ivan, O. (2017): New and known records of Oppiidae (Acari, Oribatida) from Romania. – Acarologia 58:61-71. https://doi.org/10.24349/acarologia/20184279

Ivan, O. (2018): Oribatid mites fauna and communities structure in halophilous habitats from the Danube Delta Biosphere Reserve. – Lucrari Stiintifice, Universitatea de Stiinte Agricole Si Medicina Veterinara "Ion Ionescu de la Brad" Iasi, Seria Agronomie 61(2): 59-64.

Jaeger, G., Eisenbeis, G. (1984): pH-dependent absorption of solution by the ventral tube of Tomocerus flavescens (Tullberg, 1871) (Insecta, Collembola). – Revue d'écologie et de biologie du sol 21: 519-531.

Jakšová, P., Ľuptáčik, P., Miklisová, D. (2019): Distribution of Oribatida (Acari) along a depth gradient in forested scree slopes. – Subterranean Biology 31: 29-48. https://doi.org/10.3897/subtbiol.31.36241

Jung, C., Lee, J.-H, Choi, S.-S. (2002): Potential of Using Oribatid Mites (Acari: Oribatida) as Biological Indicators of Forest Soil Acidification. – Korean Journal of Agricultural and Forest Meterology 4(2): 213-218.

Junk, W. J, Furch, K. (1993): A general review of tropical South American floodplains. – Wetlands Ecolo-gy and Management 2: 231-238. https://doi.org/10.1007/BF00188157

Kaneko, N. (1988): Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan. – Revue d'écologie et de biologie du sol 25(3): 353-363.

Karasawa, S., Hijii, N. (2004): Effects of microhabitat diversity and geographical isolation on oribatid mite (Acari: Oribatida) communities in mangrove forests. – Pedobiologia 48: 245-255. https://doi.org/10.1016/j.pedobi.2004.01.002

Khabir, Z. H., Nejad, K. H. I., Moghaddam, M., Khanjani, M., Zargaran, M. R. (2014): Species richness of oribatid mites (Acari: Oribatida) in rangelands of West Azerbaijan Province, Iran. – Persian Journal of Acarology 3(4): 293-309. https://doi.org/10.1080/01647954.2015.1033458

Khalil, M. A., Al-Assiuty, A.-N. I., van Straalen, N. M. (2011): Egg number varies with population density; a study of three oribatid mite species in orchard habitats in Egypt. – Acarologia 51(2): 251-258. https://doi.org/10.1051/acarologia/20112009

Klimek, A., Rolbiecki, S. (2014): Moss mites (Acari: Oribatida) in soil revitalizing: a chance for practical application in silviculture. – Biological Letters 51(2): 71-82. https://doi.org/10.1515/biolet-2015-0007

Kohyt, J., Skubała, P. (2013): Communities of mites (Acari) in litter and soil under the invasive red oak (Quercus rubra L.) and native pedunculate oak (Q. robur L.). – Biological Letters 50(2): 111-124. https://doi.org/10.2478/biolet-2013-0011

Krisper, G., Schuster, R. (2008): Fortuynia atlantica sp. nov, a thalassobiontic oribatid mite from the rocky coast of the Bermuda Islands (Acari: Oribatida: Fortuyniidae). – Annales Zoologici 58: 419-432. https://doi.org/10.3161/000345408X326753

Krivolutsky, D. A, Lebedeva, N. V. (2004): Oribatid Mites (Oribatei) in Bird Feathers: Passeriformes. – Acta Zoologica Lituanica 14(2): 19-38. https://doi.org/10.1080/13921657.2004.10512577

Lehmitz, R., Haase, H., Otte, V., Russell, D. (2020): Bioindication in peatlands by means of multi-taxa indicators (Oribatida, Araneae, Carabidae, Vegetation). – Ecological Indicators 109: 105837. https://doi.org/10.1016/j.ecolind.2019.105837

Lenart, A., Wolny-Koładka., K. (2013): The Effect of Heavy Metal Concentration and Soil pH on the Abundance of Selected Microbial Groups within ArcelorMittal Poland Steelworks in Cracow. – Bulletin of Environmental Contamination and Toxicology 90: 85-90. https://doi.org/10.1007/s00128-012-0869-3

Liiri, M., Haimi, J., Setälä, H. (2002): Community composition of soil microarthropods of acid forest soils as affected by wood ash application. – Pedobiologia 46: 108-124. https://doi.org/10.1078/0031-4056-00118

Lindberg, N. (2003): Soil Fauna and Global Change: Responses to Experimental Drought, Irrigation, Fertilisation and Soil Warming. – Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala.

Lindo, Z., Winchester, N. N. (2008): Scale dependent diversity patterns in arboreal and terrestrial oribatid mite (Acari: Oribatida) communities. – Ecography 31: 53-60. https://doi.org/10.1111/j.2007.0906-7590.05320.x

Ĺuptáčik, P., Miklisová, D., Kovač, Ĺ. (2011): Diversity and community structure of soil Oribatida (Acari) in an arable field with alluvial soils. – European Journal of Soil Biology 50: 97-105. https://doi.org/10.1016/j.ejsobi.2011.12.008

Luxton, M. (1972): Studies on the oribatid mites of a Danish beech wood soil. I. Nutritional biology. – Pedobiologia 12: 434-463.

Luxton, M. (1979): Food and energy processing by oribatid mites. – Revue d'écologie et de biologie du sol 16: 103-111.

Majer, J. D. (1989): Fauna studies and land reclamation technology - a review of the history and need for such studies. – In: Majer, J. D. Animals in Primary Succession. The Role of Fauna in Reclaimed Lands. Cambridge University Press. New York.

Manu, M., Honciuc, V, Neagoe, A, Băncilă, R. I, Iordache, V, Onete, M. (2019): Soil mite communities (Acari: Mesostigmata, Oribatida) as bioindicators for environmental conditions from polluted soils. – Scientific Reports 9:20250. https://doi.org/10.1038/s41598-019-56700-8

Maraun, M, Caruso, T, Hense, J, Lehmitz, R, Mumladze, L, Murvanidze, M, Nae, I, Schulz, J, Seniczak, A, Scheu, S. (2019): Parthenogenetic vs. sexual reproduction in oribatid mite communities. – Ecology and Evolution 9(12): 7324-7332. https://doi.org/10.1002/ece3.5303

Maraun, M, Heethoff, M, Schneider, K, Scheu, S, Weigmann, G, Cianciolo, J, Thomas, R. H, Norton, R. A. (2004): Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages. – Experimental and Applied Acarology 33: 183-201. https://doi.org/10.1023/B:APPA.0000032956.60108.6d

Maraun, M, Martens, H, Migge, M, Theenhaus, A, Scheu, S. (2003): Adding to the 'enigma of soil animal diversity': fungal feeders and saprophagous soil invertebrates prefer similar food substrates. – European Journal of Soil Biology 39: 85-95. https://doi.org/10.1016/S1164-5563(03)00006-2

Maraun, M, Schatz, H, Scheu, S. (2007): Awesome or ordinary? Global diversity patterns of oribatid mites. – Ecography 30: 209-216. https://doi.org/10.1111/j.0906-7590.2007.04994.x

Markkula, I, Cornelissen, J. H. C, Aerts, R. (2019): Sixteen years of simulated summer and winter warming have contrasting effects on soil mite communities in a sub‑Arctic peat bog. – Polar Biology 42: 581-591. https://doi.org/10.1007/s00300-018-02454-4

Markkula, I, Cornelissen, J. H. C, Aerts, R. (2019): Sixteen years of simulated summer and winter warming have contrasting effects on soil mite communities in a sub Arctic peat bog. – Polar Biology 42: 581-591. https://doi.org/10.1007/s00300-018-02454-4

Markkula, I, Oksanen, P, Kuhry, P. (2018): Indicator value of oribatid mites in determining past perma-frost dynamics in northern European sub-Arctic peatlands. – Boreas 47(3): 884-896. https://doi.org/10.1111/bor.12312

Marshall, D. J, Convey, P. (2004). Latitudinal variation in habitat specifity of ameronothroid mites (Oribatida). – Experimental and Applied Acarology 34: 21-35. https://doi.org/10.1007/978-94-017-0429-8_3

McGeoch, M. A, Chown, S. L. (1998): Scaling up the value of bioindicators. – Trends in Ecology & Evolu-tion 13(2): 46-47. https://doi.org/10.1016/S0169-5347(97)01279-2

Meier, F. A, Scherrer, S, Honegger, R. (2008): Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. – Biological Journal of Linnean Society 76(2): 259-268. https://doi.org/10.1111/j.1095-8312.2002.tb02087.x

Melekhina, E. N, Selivanova, N. P, Kanev, V. A. (2021): Oribatid mites (Acariformes, Oribatida) in mountain-tundra communities of Kozhim River basin (Subpolar Urals). – IOP Conference Series: Earth and Environmental Science 862: 012061. ttps://doi.org/10.1088/1755-1315/862/1/012061

Migge, S, Maraun, M, Scheu, S, Scheafer, M. (1998): The oribatid mite community (Acarina) of pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies) of different age. – Applied Soil Ecology 9: 115-121. https://doi.org/10.1016/S0929-1393(98)00065-1

Minor, M. A, Ermilov, S. G. (2015): Effects of topography on soil and litter mites (Acari: Oribatida, Mesostigmata) in a tropical monsoon forest in Southern Vietnam. – Experimental and Applied Acarology 67: 357-372. https://doi.org/10.1007/s10493-015-9955-7

Minor, M, Ermilov, S. (2017): Biodiversity of soil oribatid mites (Acari: Oribatida) in a tropical highland plateaux, Bi Doup-Nui Ba National Park, Southern Vietnam. – Tropical Ecology 58: 45-55.

Moitra, M. N. (2013): On variation of diversity of soil oribatids (Acari, Oribatida) in three differently used soil habitats- a waste disposal site, a natural forest and a tea garden in the northern plains of Bengal, India. – International Journal of Scientific and Research Publications 3: 11.

Murvanidze, M, Mumladze, L, Arabuli, T, Kvavadze, E. (2011): Landscape distribution of oribatid mites (Acari, Oribatida) in Kolkheti National Park (Georgia, Caucasus). – Zoosymposia 6: 221-233. https://doi.org/10.11646/zoosymposia.6.1.32

N'Dri, J. K, Hance, T, André, H. M, Lagerlöf, J, Tondoh, J. E. (2016): Microarthropod use as bioindica-tors of the environmental state: case of soil mites (Acari) from Côte d'Ivoire. – Journal of Animal & Plant Sciences 29(2): 4622-4637.

Niemi, G. J, McDonald, M. E. (2004): Application of Ecological Indicators. – Annual Review of Ecology, Evolution, and Systematics 35: 89-111. https://doi.org/10.1146/annurev.ecolsys.35.112202.130132

Norton, R. A. (1990): Acarina: Oribatida. – In: Dindal, D. L. Soil Biology Guide. John Wiley & Sons, New York, NY, USA.

Norton, R. A, Bonamo, P. M, Grierson, J. D, Shear, W. A. (1988): Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. – Journal of Paleontology 62: 259-269. https://doi.org/10.1017/S0022336000029905

Norton, R. A, Kethley, J. B, Johnston, D. E, O'Connor, B. M. (1993): Phylogenetic perspectives on genetic systems and reproductive modes of mites. – In: Wrensch, D. L, Ebbert, M. A. Evolution and Diversity of Sex Ratios. Chapman and Hall, New York. https://doi.org/10.1007/978-1-4684-1402-8_2

Noti, M.-I, André, H. M, Ducarme, X, Lebrun, P. (2003): Diversity of soil oribatid mites (Acari: Ori-batida) from High Katanga (Democratic Republic of Congo): a ultiscale and multifactor approach. – Biodiversity and Conservation 12: 767-785. https://doi.org/10.1023/A:1022474510390

Noti, M.-I, André, H. M, Dufrêne, M. (1996): Soil oribatid mite communities (Acari: Oribatida) from high Shaba (Zaïre) in relation to vegetation. – Applied Soil Ecology 5: 81-96. https://doi.org/10.1016/S0929-1393(96)00122-9

Olszanowski, Z, Niedbała, W. (2000): Moss mites (Acari: Oribatida) from the Słońsk nature reserve: geographic elements and the types of phagism. – Biological Bulletin of Poznań 37(2): 299-302.

Pachl, P, Domes, K, Schulz, G, Norton, R. A, Scheu, S, Schaefer, I, Maraun, M. (2012): Convergent evolution of defense mechanisms in oribatid mites (Acari, Oribatida) shows no ''ghosts of predation past''. – Molecular Phylogenetics and Evolution 65: 412-420. https://doi.org/10.1016/j.ympev.2012.06.030

Pande, Y. D, Berthet, P. (1973): Studies on the Food and Feeding Habits of Soil Oribatei in a Black Pine Plantation. – Oecologia 12(4): 413-426. https://doi.org/10.1007/BF00345051

Pannatier, E. G, Walthert, L, Blaser, P. (2004): Solution chemistry in acid forest soils: Are the BC: Al ratios as critical as expected in Switzerland? - Journal of Plant Nutrition and Soil Science 167: 160-168. https://doi.org/10.1002/jpln.200321281

Peckham, V. (1967): Studies of the Mite Alaskozetes antarcticus (Michael). – Antarctic Journal of the United States 2: 196-197.

Penttinen, R, Siira-Pietikäinen, A, Huhta, V. (2008): Oribatid mites in eleven different habitats in Fin-land. – In: Integrative Acarology. Proceedings of the 6th European Congress of the EURAAC. European Association of Acarologists. Montpellier, France.

Persson, T, Bååth, E, Clarholm, M, Lundkvist, H, Söderström, B. E, Sohlenius, E. (1980): Trophic Struc-ture, Biomass Dynamics and Carbon Metabolism of Soil Organisms in a Scots Pine Forest. – Ecological Bulletins 32: 419-459.

Petersen, H, Luxton, M. (1982): A comparative analysis of soil fauna populations and their role in decomposition processes. – Oikos 39(3): 288-388. https://doi.org/10.2307/3544689

Pfingstl, T. (2013): Habitat use, feeding and reproductive traits of rocky-shore intertidal mites from Bermuda (Oribatida: Fortuyniidae and Selenoribatidae). – Acarologia 53: 369-382. https://doi.org/10.1051/acarologia/20132101

Pfingstl, T. (2013b): Resistance to fresh and saltwater in intertidal mites (Acari: Oribatida): implications for ecology and hydrochorous dispersal. – Experimental and Applied Acarology 61: 87-96. https://doi.org/10.1007/s10493-013-9681-y

Pfingstl, T, Wagner, M, Hiruta, S. F, Koblmüller, S, Hagino, W, Shimano, S. (2019): Phylogeographic patterns of intertidal arthropods (Acari, Oribatida) from southernJapanese islands refect paleoclimatic events. – Scientific Reports 9: 19042. https://doi.org/10.1038/s41598-019-55270-z

Pinto, C, Sousa, J. P, Graça, M. A. S, da Gama, M. M. (1997): Forest soil Collembola. Do tree introductions make a difference? - Pedobiologia 41: 131-138.

Post, D. M. (2002): Using stable isotopes to estimate trophic position: models, methods, and assumptions. – Ecology 83: 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

Prinzinger, R, Preßmar, A, Schleucher, E. (1991): Body temperature in birds. – Comparative Biochemis-try & Physiology 99A(4): 499-506. https://doi.org/10.1016/0300-9629(91)90122-S

Pugh, P. J. A. (1995): Air-breathing littoral mites of sub-Antarctic South Georgia. – Journal of Zoology 236: 649-666. https://doi.org/10.1111/j.1469-7998.1995.tb02737.x

Rahgozar, M, Irani-Nejad, K. H, Zargaran, M.-R, Saboori, A. (2019): Biodiversity and species richness of oribatid mites (Acari: Oribatida) in orchards of East Azerbaijan province, Iran. – Persian Journal of Aca-rology 8(2): 147-159.

Remén, C, Krüger, M, Cassel-Lundhagen, A. (2010): Successful analysis of gut contents in fungal-feeding oribatid mites by combining body-surface washing and PCR. – Soil Biology & Biochemistry 42: 1952-1957. https://doi.org/10.1016/j.soilbio.2010.07.007

Rößler, R. (2000): The late Palaeozoic tree fern Psaronius-an ecosystem unto itself. – Review of Palaeo-botany and Palynology 108: 55-74. https://doi.org/10.1016/S0034-6667(99)00033-0

Ruf, A, Beck, L. (2005): The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites. – Ecotoxicology and Environmental Safety 62: 290-299. https://doi.org/10.1016/j.ecoenv.2005.03.029

Sandlund, O. T, Aagaard, K. (2004): Long term monitoring and research in an alpine-boreal watershed: Atndalen in perspective. – Hydrobiologia 521: 203-208. https://doi.org/10.1023/B:HYDR.0000026360.82526.1f

Schaefer, I, Norton, R.A, Scheu, S, Maraun, M. (2010): Precambrian mites colonized land and formed parthenogenetic clusters. – Molecular Phylogenetics and Evolution 57: 113-121. https://doi.org/10.1016/j.ympev.2010.04.015

Schatz, H, Behan-Pelletier, V. (2008): Global diversity of oribatids (Oribatida: Acari: Arachnida). – Hy-drobiologia 595: 323-328.

https://doi.org/10.1007/s10750-007-9027-z

Scheu, S, Falca, M. (2000): The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. – Oecologia 123: 285-286. https://doi.org/10.1007/s004420051015

Schmelzle, S, Norton, R. A, Heethoff, M. (2015): Mechanics of the ptychoid defense mechanism in Ptyctima (Acari, Oribatida): One problem, two solutions. – Zoologischer Anzeiger 254: 27-40. https://doi.org/10.1016/j.jcz.2014.09.002

Schneider, K, Migge, S, Norton, R. A, Scheu, S, Langel, R, Reineking, A, Maraun, M. (2004): Trophic niche differentiation in oribatid mites (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). – Soil Biology and Biochemistry 36: 1769-1774. https://doi.org/10.1016/j.soilbio.2004.04.033

Schneider, K, Scheu, S, Maraun, M. (2004): Feeding biology of oribatid mites: A minireview. – Phytoph-aga 14: 247-256.

Schulte, G. (1976): Gezeitenrhythmische Nahrungsaufnahme und Kotballenablage einer terrestrischen Milbe (Oribatei: Ameronothridae) im marinen Felslitoral. – Marine Biology 37: 265-277. https://doi.org/10.1007/BF00387612

Schulte, G. (1976): Zur Nahrungsbiologie der terrestrischen und marinen Milbenfamilie Ameronothri-dae (Acari, Oribatei). – Pedobiologia 16: 332-352.

Schulte, G, Schuster, R, Schubart, H. (1975): Zur Verbreitung und Ökologie der Ameronothriden (Acari, Oribatei) in terrestrischen, limnischen und marinen Lebensräumen. – Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven 15: 359-385.

Schuster, R. (1979): Soil mites in the marine environment. – Recent Advances in Acarology 1: 593-602. https://doi.org/10.1016/B978-0-12-592201-2.50084-1

Schuster, R. (1979): Soil mites in the marine environment. – Recent Advances in Acarology 1: 593-602. https://doi.org/10.1016/B978-0-12-592201-2.50084-1

Seniczak, A. (2011): Mites (Acari) of the shores of forest lakes and ponds in northern Poland, with species analysis of Oribatida. – Wydawnictwa UTP, Bydgoszcz.

Seniczak, A, Seniczak, S, García-Parra, I, Ferragut, F, Xamaní, P, Graczyk, R, Messeguer, E, Laborda, R, Rodrigo, E. (2018): Oribatid mites of conventional and organic vineyards in the Valencian Community, Spain. – Acarologia 58(Suppl): 119-133. https://doi.org/10.24349/acarologia/20184281

Seniczak, A, Seniczak, S, Graczyk, R, Waldon-Rudzionek, B, Nowicka, A, Pacek, S. (2019): Seasonal Dynamics of Oribatid Mites (Acari, Oribatida) in a Bog in Poland. – Wetlands 39: 853-864. https://doi.org/10.1007/s13157-019-01125-2

Seniczak, A, Seniczak, S, Maraun, M, Graczyk, R, Mistrzak, M. (2016): Oribatid mite species numbers increase, densities decline and parthenogenetic species suffer during bog degradation. – Experimental and Applied Acarology 68: 409-428. https://doi.org/10.1007/s10493-016-0015-8

Seniczak, A, Seniczak, S, Starý, J, Kaczmarek, S, Jordal, B. H, Kowalski, J, Roth, S, Djursvoll, P, Bol-ger, T. (2021): High Diversity of Mites (Acari: Oribatida, Mesostigmata) Supports the High Conservation Value of a Broadleaf Forest in Eastern Norway. – Forests 12: 1098. https://doi.org/10.3390/f12081098

Sharma, N, Paewez, H. (2018): Population Density and Diversity of Soil Mites (Order: acarina) in Grass-land: Special Reference to Soil Temperature and Soil Moisture. – International Journal of Applied Agri-cultural Research 13(3): 205-214.

Sidorchuk, E. A. (2008): Oribatid Mites (Acari, Oribatei) of Three Fens in the Northern Part of European Russia. – Entomological Review 88(4): 485-490. https://doi.org/10.1134/S0013873808040118

Siepel, H. (1990): Niche relationships between two panphytophagous soil mites, Nothrus silvestris Nicolet (Acari, Oribatida, Nothridae) and Platynothrus peltiferKoch) (Acari, Oribatida, Camisiidae). – Biology and Fertility of Soils 9: 139-144. https://doi.org/10.1007/BF00335797

Siepel, H, de Ruiter-Dijkman, E. M. (1993): Feeding guilds of oribatid mites based on their carbohydrase activities. – Soil Biology and Biochemistry 25: 1491-1497. https://doi.org/10.1016/0038-0717(93)90004-U

Skubała, P. (2004): Colonization and development of oribatid mite communities (Acari: Oribatida) on post-industrial dumps. – University of Silesia Press, Katowice.

Skubała, P, Mierny, A. (2009): Invasive Reynoutria taxa as a contaminant of soil. Does it reduce abundance and diversity of microarthropods and damage soil habitat? - Pesticides 1-2: 57-62.

Smrž, J. (2013): Methods of studying the feeding habits of saprophagous mites living in soil. – Acta Socie-tatis Zoologicae Bohemicae 77: 129-143.

Socarrás, A, Izquierdo, I. (2014): Evaluation of agroecological systems through biological indicators of the soil quality: edaphic mesofauna. – Pastos y Forrajes 37(1): 109-114.

Søvik, G. (2004): The biology and life history of arctic populations of the littoral mite Ameronothrus line-atus (Acari, Oribatida). – Experimental and Applied Acarology 34: 3-20. https://doi.org/10.1023/B:APPA.0000044436.80588.96

Subías, L. S. (2004): Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acari-formes, Oribatida) del mundo (1758-2002). – Graellsia 60: 3-305. https://doi.org/10.3989/graellsia.2004.v60.iExtra.218

Subías, L. S, Arillo, A. (2002): Oribatid mite fossils from the Upper Devonian of South Mountain, New York, and the Lower Carboniferous, of Country Antrim, Northern Ireland (Acariformes, Oribatida). – Estudios del Museo de Ciencias Naturales de Alava 17: 93-106.

Swift, M. J, Heal, O. W, Anderson, J. M. (1979): Decomposition in terrestrial ecosystems. – Ecological Studies, Volume 5, University of California Press, Berkeley.

Talley, D. M, Huxel, G. R, Holyoak, M. (2006): Connectivity at the Land-Water Interface. – In: Crooks, K. R, Sanjayan, M. (eds) Connectivity Conservation. Cambridge University Press. https://doi.org/10.1017/CBO9780511754821.006

Tsiafouli, M. A, Kallimanis, A. S, Katana, E, Stamou, G. P, Sgardelis, S. P. (2005): Responses of soil microarthropods to experimental short-term manipulations of soil moisture. – Applied Soil Ecology 29: 17-26. https://doi.org/10.1016/j.apsoil.2004.10.002

Urbasék, F, Stary, J. (1994): The activity of some enzymes in the guts of five oribatid species (Acari, Ori-batida). – Pedobiologia 38: 250-253.

Vacht, P, Puusepp, L, Koff, T. (2018): The Use of Oribatid Mites and Diatoms as Combined Indicators of Contaminations from Multiple Origins in Riparian Zone Forest Soils in Estonia. – Baltic Forestry 24(1): 24-35.

Van-Camp, L, Bujarrabal, B, Gentile, A.-R, Jones, R. J. A, Montanarella, L, Olazabal, C, Selvaradjou, S.-K. (2004): Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. – Office for Official Publications of the European Communities, Luxembourg.

Velez, P, Ojeda, M, Espinosa-Asuar, L, Pérez, T. M, Eguiarte, L. E, Souza, V. (2018): Experimental and molecular approximation to microbial niche: trophic interactions between oribatid mites and microfun-gi in an oligotrophic freshwater system. – PeerJ 6: e5200. https://doi.org/10.7717/peerj.5200

Villarreal-Rosas, J, Palacios-Vargas, J. G, Maya, Y. (2014): Microarthropod communities related with biological soil crusts in a desert scrub in northwestern Mexico. – Revista Mexicana de Biodiversidad 85: 513-522. https://doi.org/10.7550/rmb.38104

Vu, M. Q, Lai, H. T, Ha, M. T. (2019): Oribatid Mite Community (Acari: Oribatida) in the Mangrove For-est of the Cat Ba Biosphere Reserve, Northern Vietnam. – Proceedings of the Bulgarian Academy of Sciences 72(8): 1060-1068. https://doi.org/10.7546/CRABS.2019.08.08

Wallace, J. B, Eggert, S. L, Meyer, J. L, Webster, J. R. (2015): Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. – Ecology 96(5): 1213-1228. https://doi.org/10.1890/14-1589.1

Wallwork, J. A, MacQuitty, M. (1986): Seasonality of some Chihuahuan Desert soil oribatid mites (Acari: Cryptostigmata). – Journal of Zoology 208: 403-416. https://doi.org/10.1111/j.1469-7998.1986.tb01903.x

Walter, D. E, Proctor, H. C. (1999): Mites. Ecology, Evolution and Behaviour. – CAB International, Oxon. https://doi.org/10.1079/9780851993751.0000

Wang, Q, Zhao, X,, Chen, L, Yang, Q, Chen, S, Zhang, W. (2019): Global synthesis of temperature sensitivity of soil organic carbon decomposition: Latitudinal patterns and mechanisms. – Functional Ecology 33: 514-523. https://doi.org/10.1111/1365-2435.13256

Wehner, K, Norton, R. A, Blüthgen, N, Heethoff, M. (2016): Specialization of oribatid mites to forest microhabitats-the enigmatic role of litter. – Ecosphere 7(3):e01336. https://doi.org/10.1002/ecs2.1336

Weilhoefer, C. L, Pan, Y. (2007): Relationships between diatoms and environmental variables in wetlands in the Willamette Valley, Oregon, USA. – Wetlands 27: 668-682. https://doi.org/10.1672/0277-5212(2007)27[668:RBDAEV]2.0.CO;2

Wickings, K, Grandy, A. S. (2011): The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. – Soil Biology & Biochemistry 43: 351-358. https://doi.org/10.1016/j.soilbio.2010.10.023

Wisdom, R, Arroyo, J, Bolger, T. (2011): A survey of the Oribatida and Mesostigmata (Acarine) of Irish peatlands. – Bulletin of the Irish Biogeographical Society 35: 130-149.

Wissuwa, J, Salamon, J. A, Frank, T. (2013): Oribatida (Acari) in grassy arable fallows are more affected by soil properties than habitat age and plant species. – European Journal of Soil Biology 59: 8-14. https://doi.org/10.1016/j.ejsobi.2013.08.002

Wolters, V. (1991): Soil Invertebrates - Effects on Nutrient Turnover and Soil Structure - A Review. – Zeitschrift für Pflanzenernährung und Bodenkunde 154(6): 389-402. https://doi.org/10.1002/jpln.19911540602

Woodring, J. P. (1973): Comparative morphology, functions and homologies of the coxal glands in ori-batid mites. – Journal of Morphology 139: 407-430. https://doi.org/10.1002/jmor.1051390404

Zaitsev, A. S, Wolters, V, Waldhardt, R, Dauber, J. (2006): Long-term succesion of oribatid mites after conversion of croplands to grasslands. – Applied Soil Ecology 34: 230-239. https://doi.org/10.1016/j.apsoil.2006.01.005

Zinkler, D. (1971): Carbohydrase streubewohnender Collembolen und Oribatiden. – In: D'Aguilar, J, Athias-Henriot, C, Bessard, A, Bouche, M. B, Pussard, M. (Eds). Organisms du sol et production primaires. IV Coll. Pedobiologiae, Dijon, INRA, Paris, 329-334.

##submission.downloads##

Megjelent

2024-05-17

Hogyan kell idézni

Mics, F. (2024). Ökológiai indikáció lehetőségei páncélosatkák alapján. Opuscula Theologica Et Scientifica, 2(1), 59–95. https://doi.org/10.59531/ots.2024.2.1.59-95

Folyóirat szám

Rovat

A természet és a kutatás